

AFRL-IF-RS-TR-2004-101
Final Technical Report
April 2004

QOS AND CONTROL-THEORETIC TECHNIQUES
FOR INTRUSION TOLERANCE

Arizona State University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-101 has been reviewed and is approved for publication

APPROVED: /s/
 JOHN C. FAUST
 Project Engineer

 FOR THE DIRECTOR: /s/
 WARREN H. DEBANY, JR.
 Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
APRIL 2004

3. REPORT TYPE AND DATES COVERED
FINAL Apr 01 – Sep 02

4. TITLE AND SUBTITLE

QOS AND CONTROL-THEORETIC TECHNIQUES FOR INTRUSION
TOLERANCE

6. AUTHOR(S)

Nong Ye

5. FUNDING NUMBERS
G - F30602-01-1-0510
PE - 62702F
PR - OIPG
TA - 32
WU - P2

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Arizona State University
Box 875906
1711 S. Rural Road, Goldwater Center, Room 502
Tempe AZ 85287

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFGB
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-101

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: John C. Faust/IFGB/(315) 330-4544 John.Faust @rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
As we increasingly rely on information systems to support a multitude of critical operations, it becomes more and more
important that these systems are able to deliver Quality of Service (QoS), even in the face of intrusions. This report
examines two host-based resources, a router and a web server, and presents simulated models of modifications that
can be made to these resources to make them QoS-capable. Two different QoS models are investigated for the router.
The first model implements a router with a feedback control loop that monitors the instantaneous QoS guarantee and
adjusts the router’s admission control of new requests accordingly. The second router model, called Adjusted Weighted
Shortest Processing Time, queues data packets according to a weight which is dependent on their initial priority weight
and the amount of time they have awaited service. For the web server, six queuing disciplines are simulated and
analyzed for their efficiency in delivering QoS. These disciplines are compared on the basis of selected QoS
measurements, including lateness, drop rate, time-in-system and throughput. We find that there is not necessarily one
best queuing rule to follow; the appropriate selection depends on the needs of that web server.

15. NUMBER OF PAGES14. SUBJECT TERMS
Quality of Service, Router, Web Server, QoS-Aware Router, Adjusted Weighted Shortest
Processing Time, QoS-Aware Web Server, Web Server Scheduling, Queuing Disciplines 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

80

Abstract
As we increasingly rely on information systems to support a multitude of critical

operations, it becomes more and more important that these systems are able to deliver
quality of service, even in the face of intrusions. One common class of cyber-attacks is
the flooding of the system’s resources with requests for service. Thus, a reliable
information system must be able to adeptly handle a large number of requests efficiently
so that legitimate users may still use the system even as illegitimate users are attempting
to flood the system.

This report examines two host-based resources and presents simulated models of
modifications that can be made to these resources to make them capable of handling a
number of requests. The two resources examined are a router and a web server.

There are two different quality of service models presented for the router. The
first model implements a router with a feedback control loop that monitors the
instantaneous quality of service guarantee and adjusts the router’s admission control of
new requests accordingly. This model is compared to the basic router model that
represents the typical configuration currently in use. The resulting comparison indicates
that the feedback control loop is an improvement on the existing basic router. It
decreases the time-in-system for data packets, and reduces packet loss, but does not fully
utilize its bandwidth as well as a basic router with over-characterization.

The second router model suggests a new approach of queuing new requests for
service. This approach is called Adjusted Weighted Shortest Processing Time and
queues data packets according to a weight, which is dependent on their initial priority
weight and the amount of time they have awaited service. The new approach is
compared to two other queuing disciplines – Weighted Shortest Processing Time and
First-Come First-Serve. We present data that indicate that the Adjusted Weighted
Shortest Processing Time discipline improves the high time-in-system variance that exists
in the Weighted Shortest Processing Time discipline, but it does not fairly allocate
resources to both high and low priority data packets.

For the web server, six queuing disciplines are simulated and analyzed for their
efficiency in delivering quality of service. These disciplines are Best Effort,
Differentiated Services, Apparent Tardiness Cost, Earliest Due Date, Weighted Shortest
Processing Time, and Weighted Only. These disciplines are compared on the basis of
selected quality of service measurements, including lateness, drop rate, time-in-system,
and throughput. We find that there is not necessarily one best queuing rule to follow; the
appropriate discipline selection depends on the needs of that web server.

 i

Table of Contents

INTRODUCTION ..1

CHAPTER 1: ROUTER QUALITY OF SERVICE MODEL WITH FEEDBACK
CONTROL ..3

1-1 Router with Feedback Control Loop .. 3
1-1.1 Overview of Router Design .. 4
1-1.2 Design Specification ... 6

1-2 Simulation and Experiment ... 9
1-2.1 Simulation Models .. 9
1-2.2 Experiment.. 12

1-3 Results and Discussion.. 18
1-3.1 Heavy Traffic Condition ... 19
1-3.2 Light traffic condition ... 20
1-3.3 Conclusions... 21

CHAPTER 2: ROUTER SERVICE DIFFERENTIATION BY ADJUSTED
WEIGHTED SHORTEST PROCESSING TIME SERVICE DISCIPLINE23

2-1 A-WSPT Service Discipline.. 23

2-2 Simulations and Experiment.. 27

2-3 Results and Discussion.. 29
2-3.1 Heavy traffic ... 29
2-3.2 Light traffic ... 34
2-3.3 Conclusions... 38

CHAPTER 3: PROVIDING QUALITY OF SERVICE FOR A WEB SERVER
USING QUEUING DISCIPLINES ...39

3-1 QoS Delivery for a Web Server ... 39
3-1.1 Previous Approaches .. 39
3-1.2 Web Server Operation... 42
3-1.3 QoS Measures ... 44

3-2 Discussion of Different Queuing Disciplines... 45

3-3 Simulation of Different Queuing Rules... 48

3-4 Experimental Results.. 53
3-4.1 Heavy-traffic Case .. 53
3-4.2 Light-Traffic Case... 62

3-5 Conclusions.. 69

REFERENCES ...72

 ii

List of Figures

Figure 1-1. The basic router QoS model... 6
Figure 1-2. The QoS model with feedback control... 7
Figure 1-3. Simulated router with “basic” QoS model. .. 9
Figure 1-4. Simulated router with “feedback” QoS model... 11
Figure 1-5. Token rates with different proportional gain values. 15
Figure 1-6. Token rates with different integral gain values... 16
Figure 1-7. Token rates with different differential gain values. 17
Figure 1-8. Throughput of high priority traffic with different queue length upper bound.
... 18
Figure 1-9. Time-in-system of feedback router and basic routers (heavy traffic). 19
Figure 1-10. Throughput of feedback router and basic routers (heavy traffic) 20
Figure 1-11. Time-in-system of feedback router and basic routers (light traffic). 20
Figure 1-12. Throughput of feedback router and basic routers (light traffic)................... 21
Figure 2-1. Service order and the insertion of the packet. .. 26
Figure 2-2. Router model in OPNET Modeler. .. 28
Figure 2-3. Time-in-system of high priority traffic (heavy traffic). 30
Figure 2-4. Time-in-system of low priority traffic (FCFS). ... 31
Figure 2-5. Throughput of high priority traffic (heavy traffic)... 33
Figure 2-6. Throughput of low priority traffic (heavy traffic).. 33
Figure 2-7. Throughput of overall traffic (heavy traffic).. 34
Figure 2-8. Time-in-system of high priority traffic (light traffic). 35
Figure 2-9. Time-in-system of low priority traffic (light traffic)...................................... 35
Figure 2-10. Throughput of high priority traffic (light traffic). .. 36
Figure 2-11. Throughput of low priority traffic (light traffic). ... 37
Figure 2-12. Throughput of all traffic (light traffic). .. 37
Figure 3-1. Web server QoS model. .. 43
Figure 3-2. Basic DiffServ queuing rule model.. 46
Figure 3-3. The topology of the QoS web server simulation... 48
Figure 3-4. Overall time-in-system in the heavy-traffic scenario.................................... 53
Figure 3-5. Queue size in the heavy-traffic scenario. .. 54
Figure 3-6. Time-in-system of Class 4 in the heavy-traffic scenario. 55
Figure 3-7. Time-in-system of Class 2 in the heavy traffic scenario................................ 56
Figure 3-8. Time-in-system of Class 1 in the heavy traffic scenario............................... 56
Figure 3-9. Overall drop in the heavy traffic scenario... 57
Figure 3-10. Drop of Class 4 in overwhelming scenario. .. 57
Figure 3-11. Drop of Class 2 in overwhelming scenario. ... 58
Figure 3-12. Drop of Class 1 in overwhelming scenario. ... 59
Figure 3-13. Overall time-in-system in light-traffic scenario... 63
Figure 3-14. Queue size in light-traffic scenario. .. 63
Figure 3-15. Time-in-system of Class 4 in light-traffic scenario..................................... 64
Figure 3-16. Time-in-system of Class 2 in light-traffic scenario..................................... 65

 iii

Figure 3-17. Time-in-system of Class 1 in light-traffic scenario...................................... 65
Figure 3-18. Overall drop in light-traffic scenario... 66
Figure 3-19. Drop of Class 1 in light-traffic scenario.. 66
Figure 3-20. Overall time-in-system of ATC with different scaling parameters............. 70

List of Tables

Table 1-1. Conditions for the simulation of heavy traffic. ... 12
Table 1-2. Conditions for simulation of light traffic... 13
Table 1-3. The configurations of the basic router and feedback router. 13
Table 2-1. Packet loss for FCFS, WSPT, and A-WSPT disciplines under heavy traffic. 31
Table 3-1. Parameter settings in overwhelming scenario. ... 50
Table 3-2. Time-in-system in heavy-traffic scenario: mean and deviation values. 54
Table 3-3. Drop in heavy-traffic scenario.. 59
Table 3-4. Lateness in heavy-traffic scenario. ... 60
Table 3-5. Throughput in heavy-traffic scenario. .. 61
Table 3-6. Average queue size for heavy-traffic scenario. .. 62
Table 3-7. Parameter settings in light-traffic scenario... 62
Table 3-8. Time-in-system in light-traffic scenario.. 63
Table 3-9. Drop in light-traffic scenario. ... 66
Table 3-10. Lateness in light-traffic scenario. ... 67
Table 3-11. Throughput in light-traffic scenario. .. 68
Table 3-12. Average queue size in light-traffic scenario. ... 69

 1

Introduction
 Over the last decade, there has been an explosion in the usage of the Internet and

other information systems for personal and official purposes. As we increasingly rely on

information systems to support critical operations in defense, banking,

telecommunication, transportation, electric power and many other systems, intrusions

into these systems have become a significant threat to our society with potentially severe

consequences [1-2]. Therefore, it becomes increasingly important that these systems are

designed with a level of intrusion tolerance that enable them to continue functioning

correctly and providing services in a timely manner even in the face of intrusions, that is,

to maintain the quality of service (QoS) regardless of what intrusions occur.

 Currently, information systems are designed using the “best-effort” model, in

which their resources are available to use regardless of their state. This model leaves the

system vulnerable to a depletion of its resources if it is sent a large number of service

requests from malicious users, which will effectively deny the availability of resources to

legitimate users. For example, massive amounts of data packets can be directed to a web

server at a site, thereby making the web server unavailable to take legitimate service

requests. Especially for mission-critical purposes, information systems must adopt a

robust design to resist such malicious exploits and to provide quality of service (QoS)

guarantees even in the face of intrusions.

The project described herein is the first part of a research project that will

establish the QoS-centric model of stateful resource management for building intrusion-

tolerant information systems. Unlike most existing efforts, which focus mostly on QoS of

network resources, such as ATM networks and multimedia communication over

communication channels, this project is focused on the QoS of host-based resources.

Since host-based resources are involved in all applications, their QoS management is

critical to the effectiveness of intrusion-tolerant information systems. The goal of this

project is to develop a control-theoretic approach to intrusion tolerance from a QoS-

centric resource management perspective in order to enable an information system to

continue its correct functioning and maintain QoS in the face of intrusions.

 2

 The research described within fulfills the requirements of the first phase of this

project. In this phase, we focused on two host-based resources – a router and a web server

– which we then analyzed and used to establish and demonstrate the feasibility of the

QoS and control-theoretic techniques. For each of these resources, we determined and

analyzed the characteristics of processes requesting services from the resource, and

defined the QoS metrics of the output performance of processes accordingly. We then

selected reliable control trigger techniques to monitor and detect changes in these metrics

and tested their performance in detecting intrusions. The next step was to develop

probes and tests that reveal the state of the resources when significant changes in the QoS

metrics of processes are detected, and test their performance in diagnosing the impact of

intrusions on the state of the resources. We used these results to develop control

mechanisms for the resources and then tested their performance in configuring resources

and scheduling processes to maintain QoS even under the impact of intrusions. Finally,

we implemented a prototype of the control loop integrating the reliable control trigger

techniques and the robust control mechanisms, and tested the integration prototype for its

overall performance of intrusion tolerance.

For the router, two control mechanisms were developed and analyzed. The first

mechanism is one that utilizes a feedback control loop that is capable of monitoring the

instantaneous QoS guarantee and adapting the admission control to reflect the router’s

resource availability. This model is described in detail in Chapter 1. The second

mechanism for the router is the modification of its service discipline. This new service

discipline queues packets according to their weight, adjusting a packet’s weight based on

the amount of time it has been waiting in the queue. In the event of congestion, lower

priority packets are simply dropped. This mechanism is described in more detail in

Chapter 2.

For the web server, we analyzed its performance under different queuing rules in

an attempt to find the rule that would maximize the QoS of the server. Six queuing rules

were analyzed, including the “best-effort” model currently employed to compare QoS of

the new models to the existing one. The details of these rules and the results of these

tests are described in Chapter 3.

 3

Chapter 1: Router Quality of Service Model with
Feedback Control

1-1 Router with Feedback Control Loop

One definition of QoS provided by Geoff Huston is “the ability to differentiate between

traffic or service types so that the network can treat one or more classes of traffic

differently than other types” [2]. According to this definition, QoS roots in the ability to

provide differentiated services with regards to different service requirements.

Currently, a typical router operates using one of two QoS architectures – either

Integrated Service (InteServ) or DiffServ. The difference between these two models is

that InteServ delivers QoS on a per-flow basis, while DiffServ delivers QoS on a per-

aggregate basis. In this context, flow is defined as “a distinguishable stream of related

datagrams that results from a single user activity and requires the same QoS” [3], and

aggregate is a superset of flow. An end-to-end bandwidth reservation is required to

guarantee the bandwidth to individual flow.

The InteServ model is made up of predictive service, best effort service and link-

sharing service. A reference framework is proposed for its implementation, under which

are packet scheduling, packet classification, admission control, and path reservation. The

per-flow based service differentiation provides a fine granularity to isolate flows from

each other, and thus, achieve firm end-to-end service guarantees. However, flow-based

technology is vulnerable to the scalability problem, especially in backbone networks,

where there are millions of flows and the management overhead is extremely high.

Differentiated Service (DiffServ) [4], which provides its QoS guarantee on a per-

aggregate basis, divides the network into domains. At the edge of the domain, traffic is

classified into aggregates, policed and marked in accordance to given administrative

policies. The core routers sitting inside the domain provide per-hop behavior (PHB)

corresponding to the traffic aggregate. Compared to InteServ, DiffServ needs no end-to-

end path reservation, pushing the complexity to the network edge. The coarser granularity

 4

scales down the number of entities in the router, but it results in a weaker service

guarantee compared to that of the per-flow based approach.

Due to the variable nature of network traffic, the characterization of performance

requirements for traffic presents a significant challenge to providing QoS guarantees. Jim

Kurose [5] writes about four classes of approach to providing a QoS guarantee. Some

approaches – such as tightly controlled approaches – prevent a change in the traffic

characterization. Others – such as approximate approaches, bounding approaches, and

observation-based approaches – tolerate the change by taking into consideration the

change in the peak rate. Tightly controlled approaches condition the traffic with a non-

work conserving queuing discipline. To maintain consistent traffic characterization, the

tightly controlled approaches may purposely block the arriving session while allowing

the output link to be idle, causing potential low utilization of the output link. The other

approaches all require some sort of traffic characterization, but their characterizations are

approximate based on estimation or prediction. This inevitably leads to inaccuracies in

the traffic characterization, which in turn leads to inappropriate deliveries of QoS. In

both these approaches and tightly controlled approaches, there is always the possibility

that the actual incoming traffic either overuses or underutilizes allocated resource.

Overuse may result in delay increase and packet loss, which downgrades the QoS

guarantee. Under-use results in the waste of service capacity. This suggests that a new

approach is needed.

1-1.1 Overview of Router Design

 The router model proposed in this chapter circumvents the question of how to

accurately characterize traffic by not requiring accurate traffic characterization at all.

This QoS model employs a performance-centric approach for QoS guarantee while best

utilizing the available resource. In this approach, the router is able to monitor the

performance output of the QoS guarantee. The traffic characterization of admission

control may be varied to a significant degree as long as the router is able to guarantee the

QoS with the allocated resource. The admission control admits enough traffic to

maximize the utilization of allocated resource while satisfying the performance

requirement. To support this approach, the router needs to be aware of the instantaneous

 5

performance of QoS guarantee, and admission control needs to dynamically vary the

traffic characterization. However, the QoS model of the average router lacks the

adaptability needed to implement the proposed approach. In these models, the router is

unaware of the instantaneous state of both the utilization of resources and how well the

guarantee is provided. Also, the admission control policy of the routers is fixed during

operation until it is manually changed. Thus, to implement our performance-centric

approach, we must design a feedback control loop.

The designed control loop is made up of performance monitoring, the feedback

controller, and adaptive admission control. The performance of the QoS guarantee is

closely monitored according to the two important performance metrics for a router:

timeliness and precision [6]. In the context of a router’s QoS, the timeliness is measured

by the packet delay. Knowing that the queuing delay is the only controllable delay

component in the scope of this study, we take the time-in-system of the packet’s wait in

the queue as the measure of timeliness. The precision of the router is measured by the

packet loss rate.

The router should guarantee the timeliness and precision to all admitted packets.

If the router is running out of its service capacity, the packets are denied service upon

arrival to avoid deteriorating either the timeliness or packet loss of the router. Admission

control is customized with the ability to dynamically characterize the incoming traffic,

and traffic is admitted against this dynamic traffic profile. A feedback controller parses

the performance output, calculates the adjustment to the traffic characterization, and

feeds the adjustment to the admission control for actuation.

The design of the performance-centric QoS model is carried out in two steps.

First, we design a basic QoS model, which is capable of basic service differentiation,

resource allocation and fixed rate admission control. Then, we introduce a feedback

control loop to realize the performance-centric QoS guarantee.

 6

1-1.2 Design Specification

Figure 1-1. The basic router QoS model

Before the feedback control loop can be applied to implement the performance-

centric QoS guarantee approach, a QoS model capable of basic service differentiation and

resource allocation is designed, as shown in Figure 1-1. The basic QoS model provides

two classes of service – high priority service and low priority service. The high priority

service is the traffic with timeliness and precision requirements. The low priority service

accommodates applications tolerable to both delay and packet loss. Our primary interest

is to guarantee the QoS to the high priority traffic. To simplify the study, we assumed that

the packets of each type of service have been tagged before they arrive at the router,

eliminating the needs for packet classification and marking. At each input port, the

admission control characterizes and conditions the high priority traffic using the token

bucket model. In the token-bucket model, allowed traffic is characterized by two

parameters – token rate r and bucket depth p. r dictates the long-term rate of admitted

traffic, and p specifies the maximum burst size of admitted traffic. The packets beyond

the allowed traffic characterization are discarded immediately upon arrival. An in-depth

discussion and introduction of the token bucket model are covered in Parekh and

Gallager’s work [7]. At each output port of the router, the packets are accepted into a

queuing buffer and scheduled for transmission with a priority queuing discipline. The

priority queue discipline enforces the bandwidth allocation between two classes of

service based on priority. Two queues, a high priority queue and a low priority queue, are

provided to contain the packets. The high priority queue and low priority queue are

dedicated to serve exclusively the high priority traffic and the low priority traffic

 7

respectively. A certain amount of buffer is allocated to both the high priority and low

priority queue to tolerate the burst of traffic. With the priority queuing discipline, the

output link always serves the packets in the high priority queue as long as it is not empty.

The packets in the low priority queue obtain the service only when the high priority

queue is empty. Within each queue, the packets are served in first-come-first-serve

(FCFS) order. As a result of priority queuing, in this study, the high priority traffic is

actually assigned the full capacity of the bandwidth.

Figure 1-2. The QoS model with feedback control.

Building on the basic QoS model, we introduce the feedback control loop, as shown

in Figure 1-2, to implement the performance-centric QoS guarantee to high priority

traffic. The feedback control loop is made up of two components – a performance probe

and a controller. The performance probe monitors the queue length of the high priority

queue at the output port. As we know from Little’s Law, the time-in-system of a packet is

proportional to the queue length. By knowing that the queue length is less than the

capacity of the queue by at least one maximum packet length, we can deduce that no

packet loss is happening at the moment. As a result, the instant queue length of the high

priority queue reflects both the timeliness and precision of the QoS guarantee of high

 8

priority traffic. The time-in-system can be bounded and the packet loss can be prevented

by bounding the queue length. An upper bound is set for the high priority queue length.

The error e is calculated from equation

Sle −= (1-1)

where l is the actual queue length of queue at the moment and S is the upper bound of the

queue length. A Proportional-Integral-Differential (PID) controller [8] constantly reads

the error e and calculates the adjustment µ with the PID equation

dt
deKedtKeK dip ++= ∫µ (1-2)

where Kp, Ki and Kd are proportional gain, integral gain and differential gain respectively,

and are all non-negative constants.

The adjustment for the rate of admission of packets is fed to the admission control

at each input port either to scale up or to scale down the admission rate of traffic. To

achieve fair admission control, the admission rate adjustment is split up among input

ports in proportion to the actual rate of incoming high priority traffic at each input port.

The input port contributing the most to the increase of queue length receives the largest

adjustment to its admission rate. For example, in case of a router with only two input

port, the total adjustment is split up between two input ports using equations

yx µµµ += (1-3)

and

*

*

Y
X

y

x =
µ
µ

 (1-4)

where µx, µy are the adjustments allocated for the two input ports respectively, and X*, Y*

are the actual rate of incoming high priority traffic at the two input ports respectively.

The divided adjustment is applied to bring down the token rate ri of the token bucket at

the corresponding input port for µi units, that is

iii rr µ−=' (1-5)

where ri and ri’ stand for the token rate of input port i at current moment and next

moment respectively, and i ∈ {all input ports}. By adjusting the token rate r, admission

control is able to scale up and down the amount of traffic actually admitted. When the

 9

actual queue length exceeds the upper bound, the PID controller decreases the token rate

to slow down the incoming traffic, tending to bring the actual queue length back to within

upper bound.

1-2 Simulation and Experiment

To examine performance of the QoS guarantee with feedback control, the router QoS

model with feedback control (“feedback” model hereafter) and the basic router QoS

model without feedback control (“basic” model hereafter) are simulated and compared.

The simulation and experiment are accomplished in OPNET Modeler of OPNET

Technologies, Inc.

1-2.1 Simulation Models

Figure 1-3. Simulated router with “basic” QoS model.

The simulated router of the “basic” QoS model, shown in Figure 1-3, is composed

of two input ports, port 0 and 1, and only one output port, with an IP forwarder module

 10

simulating the function of forwarding the packets from input ports to output port. Each

input port is associated with three traffic sources. In this study, we assume that all packets

come from either one of two input ports and go to the only output port. A priority based

queuing system is modeled at the output port. The queuing system is made up of a high

priority queue and a low priority queue with limited capacity, and uses a priority queuing

discipline. A packet sink is connected with the queuing module to collect the output

packets. The token bucket of the admission control has a fixed token rate, which is

unchanged during the whole simulation.

Each traffic source generates a traffic stream with a certain QoS requirement. Two

types of traffic are considered in this simulation – high priority and low priority. The

priority of traffic is marked in the Type-of-Service (ToS) field of the IP header of

belonging packets. In this study, ToS is set to 7 to indicate high priority traffic, and 0 for

low priority traffic. Since it is a general practice to assume the random arrival process as

a Poisson process, we specify that the inter-arrival time of packets is exponentially

distributed. Similarly, the size of packets generated by each source assumes normal

distribution. The expectation of the rate (bits per second) of the incoming traffic

generated by each source can be estimated by the ratio of mean packet size and mean

inter-arrival time.

 11

Figure 1-4. Simulated router with “feedback” QoS model.

The simulated router that utilizes the “feedback” QoS model (Figure 1-4) is

designed by adding to the “basic” router model an additional feedback control loop

composed of a queue length probe, a PID controller, and admission control. Ideally, the

probe should monitor the queue length continuously. Since the arrivals and departures of

packets at the queue are discrete events, the queue length may undergo extreme and

abrupt variation. In the simulation, to avoid the high frequency vibration of the token rate

and to maintain the relative stability of the admission policy, the queue length is sampled

with a 2s interval, which is selected intuitively. To better bind the queue length, the

maximum value of the queue length in the interval is taken as the sample value of that

interval. For each admission control, the token rate starts with an initial level R. The PID

equation is simplified as the equation

)/()2()(1211 −−−− −+−+−+= kkkkkdkkkikp TTeeeKTTeKeKµ (6)

with the integral and differential terms replaced with rectangular integration and linear

approximation of differentiation respectively. In the above equation, ei stands for the

 12

error at time Ti, and Ti-1 stands for the last measure moment previous to Ti. The

adjustment splitter takes the real time statistic measure of the actual admission rate of

high priority traffic from both input ports to allocate their adjustments.

1-2.2 Experiment

The experiments for all router models are carried out under both “heavy” and “light”

traffic conditions. The heavy traffic condition simulates overwhelming high priority

traffic, in which the rate exceeds the capacity of output link. All six traffic sources

generate packets with size normally distributed, with mean 10,000 b and variance 2,000

b. The setting of the six traffic sources and rates of generated traffic are shown in Table

1-1. Source 0, 1, 3, and 4 generate high priority traffic, and source 2 and 5 generate low

priority traffic. Each input port generates high priority traffic at an average rate of

350,000 b/s and low priority traffic at 150,000 b/s. The total high priority traffic is

generated at 700,000 b/s, which is above the bandwidth of the output link.

Table 1-1. Conditions for the simulation of heavy traffic.

Interarrival Time Source Priority

Probability

Distribution

Mean

Rate of

Generated

Traffic

0 High Exponential 0.04000 s 250,000 b/s

1 High Exponential 0.10000 s 100,000 b/s

2 Low Exponential 0.06667 s 150,000 b/s

3 High Exponential 0.04000 s 250,000 b/s

4 High Exponential 0.10000 s 100,000 b/s

5 Low Exponential 0.06667 s 150, 000 b/s

 13

Table 1-2. Conditions for simulation of light traffic.

Interarrival Time Source Priority

Probability

Distribution

Mean

Rate of

Generated

Traffic

0 High Exponential 0.13333 s 75,000 b/s

1 High Exponential 0.13333 s 75,000 b/s

2 Low Exponential 0.06667 s 150,000 b/s

3 High Exponential 0.13333 s 75,000 b/s

4 High Exponential 0.13333 s 75,000 b/s

5 Low Exponential 0.06667 s 150,000 b/s

The configuration for the light traffic condition is summarized in Table 1-2. Each

input port generates high priority traffic at a rate of 150,000 b/s and low priority traffic at

rate of 150,000 b/s. Total high priority traffic generated by both input ports is 350,000

b/s, which is lower than the bandwidth of the output link.

As mentioned previously, our primary concern is the timeliness and precision of

the QoS guarantee to high priority traffic, and its utilization of allocated bandwidth. Thus,

we collect the data concerning the time-in-system and the packet loss rate of the high

priority queue. We also collect throughput, which is the output rate of traffic, to reflect

the utilization of the bandwidth.

Table 1-3. The configurations of the basic router and feedback router.

 Basic Model

(Over-

characterization)

Basic Model

(Under-

characterization)

Feedback Model

Bandwidth of output link 640 000 b/s 640 000 b/s 640 000 b/s

High priority queue capacity 100 000 b 100 000 b 100 000 b

 14

Upper bound of queue length - - 80 000 bits

Low priority queue capacity 450 000 b/s 450 000 b/s 450 000 b/s

Token rate (Port 0, 1) 450 000 b/s 250 000 b/s 400 000 b/s (initial)

Bucket depth (Port 0, 1) 100 000 b 100 000 b 100 000 b

Proportional gain (Kp) - - 1.0

Integral gain (Ki) - - 0.2

Differential gain (Kd) - - 0.2

Control step length - - 2 s

The experiment is designed to compare admission control schemas of the

feedback router, the basic router with over-characterization (“basic (over)”), and the basic

router with under-characterization (“basic (under)”). The configurations of the routers of

each schema are shown in Table 1-3. The over-characterization admission control

characterizes the traffic with a loose upper bound, allowing great variance in the rate of

incoming traffic. In the basic (over) model, the token rates at both input ports are set to

450,000 b/s, allowing most of the traffic to enter the router. The under-characterization

admission control characterizes the traffic with a stringent bound. The basic (under)

model sets the token rates at both input ports to 250,000, which is lower than the average

rate of incoming traffic, with all other settings exactly the same as basic (over) model.

To make the feedback router comparable to the basic routers, it shares the same

setting as the basic models, except that it has a feedback control loop and variable token

rates for both admission controls. The proportional, integral and differential gains Kp, Ki

and Kd of the feedback router are selected empirically through three sets of preliminary

simulation runs respectively. The criterion for selecting these parameters is the rate of

convergence and level of oscillation of the token rate. A quick convergence with modest

oscillation is preferable. For all of these preliminary simulation runs, the incoming traffic

is set to heavy traffic conditions. The feedback router under observation sets its

parameters, except for Kp, Ki and Kd, to the configuration shown in Table 1-3.

 15

Figure 1-5. Token rates with different proportional gain values.

A set of four simulation runs was conducted to select Kp, with Kp set to 5, 1, 0.2 and 0.04

respectively, and Ki, Kd both set to 0.2. By visually inspecting the token rate plot as

shown in Figure 1-5, we observe that when Kp is equal to 1, the traffic conditioner

converges fast to a stable level with modest oscillation. We assume 1 as the value of Kp.

 16

Figure 1-6. Token rates with different integral gain values.

We ran another set of four simulations to determine the integral gain Ki. Ki is set to 5, 1,

0.2, and 0.04 respectively, with Kp fixed at 1 and Kd set to 0.2. By inspecting the token

rate plot (Figure 1-6), we observe that when Ki is equal to 0.2, the token rate converges

fast and exhibits modest oscillation. We take 0.2 as the value of integral gain.

 17

Figure 1-7. Token rates with different differential gain values.

The differential gain, Kd, is determined in a similar way. Kd is set to 5, 1, 0.2, and

0.04 respectively, with Kp equal to 1 and Ki equal to 0.2. By visually examining the plot

of the token rate (Figure 1-7), we see that when Kd is equal to 0.2, the token rate exhibits

fast convergence and modest oscillation. We take 0.2 as the value of differential gain.

The upper bound of queue length is also determined through a set of preliminary

simulation runs. Three runs are conducted with the upper bound set to 90,000 b, 80,000 b,

and 70,000 b respectively, and the other parameters are set to follow the configuration

shown in Table 1-3. The selection of the queue length upper bound is based on how it

affects the packet loss and throughput of high priority traffic. The number of packet

losses for an upper bound of 90,000 b, 80,000 b, and 70,000 b are 232, 107 and 43

packets respectively. The throughput is plotted in Figure 1-8, and inspection of this figure

indicates that there is a trade-off between the packet loss and throughput. When the queue

length upper bound approaches the queue capacity, the packet loss and throughput

 18

increase at the same time. When the upper bound is set to 80,000 b, the packet loss and

throughput are both moderate, so we take 80,000 b as the upper bound of queue length.

In total, there are three simulation runs conducted with different QoS models. Each

simulation run lasts for 180 seconds. Simulation results are collected and compiled.

Figure 1-8. Throughput of high priority traffic with different queue length upper

bound.

1-3 Results and Discussion

We now compare the feedback router to the basic model with over-

characterization and the basic model with under-characterization in turn. The

comparisons are carried out in terms of three performance measures: time-in-system,

packet loss and, throughput.

 19

1-3.1 Heavy Traffic Condition

The feedback router losses total 107 packets, accounting for 1% of all admitted

high priority traffic, while the basic router with over-characterization loses 1,299 packets,

accounting for 10.3% of admitted high priority traffic. From these results, it is evident

that the feedback router greatly improves the precision performance of the QoS

guarantee. The feedback router also exhibits a shorter bounded time-in-system than that

of the basic router with over-characterization admission control. In addition, the time-in-

system of the feedback router is well bounded.

However, the throughput of the feedback router is slightly lower than that of the

basic router with over-characterization. The latter almost fully utilizes all of its

bandwidth allocation. The basic router with under-characterization condition loses no

packets during the whole simulation and achieves lower time-in-system than that of

feedback router. It does this, however, at the price of lower bandwidth utilization than

that of feedback router. The results of timeliness and throughput for all three models are

shown in Figure 1-9 and Figure 1-10 respectively.

Figure 1-9. Time-in-system of feedback router and basic routers (heavy traffic).

 20

Figure 1-10. Throughput of feedback router and basic routers (heavy traffic)

1-3.2 Light traffic condition

Figure 1-11. Time-in-system of feedback router and basic routers (light traffic).

 21

Under light traffic conditions, the three simulated routers exhibit similar

behaviors. The time-in-system of the high priority traffic is low, as shown in Figure 1-11.

All three routers achieve very similar throughput of high priority traffic. Finally, in all

three routers, there are no packets lost.

 The throughput results for the feedback router and the basic router (both with

over-characterization and under-characterization) are shown in Figure 1-12.

Figure 1-12. Throughput of feedback router and basic routers (light traffic).

1-3.3 Conclusions

Under heavy traffic conditions, the feedback router is an improvement over the

basic router. Compared to the rigid admission control of over-characterization, adaptive

admission control with feedback control improves both the time-in-system and packet

loss. Compared to rigid admission control of under-characterization, adaptive admission

control with feedback control improves the utilization of the bandwidth. There is a

tradeoff between the benefit of high utilization of the bandwidth and the risks of losing

packets and increased time-in-system. With fixed bandwidth and buffer allocation, the

higher the bandwidth utilization, the greater possibility there is of losing packets and the

 22

longer time-in-system will be. The adaptive admission control dynamically balances the

needs of high resource utilization and the goals of timeliness and precision to achieve the

QoS guarantee while maximizing the use of resources.

 23

Chapter 2: Router Service Differentiation by Adjusted
Weighted Shortest Processing Time Service Discipline

2-1 A-WSPT Service Discipline

Today’s Internet employs a simple service model, named best effort, which employs a

First-Come-First-Serve (FCFS) service discipline to serve the packets at Internet routers.

At the output interface of router, a single queuing is maintained in the buffer and the

packets are served in a first-come-first-serve fashion. The packets are dropped at the tail

of the queue if the buffer is full. The network allocates its resource to its users as best as

it can, making no commitment with regard to service quality, and “all packets are treated

the same without any discrimination or explicit delivery guarantees.” [9] The success of

the Internet is largely contributed to the simplicity of the best effort service model. It is

the end users’ responsibility to maintain the state of connections. The management

overhead in routers is low and cheap. The applications don’t ask for permission before

beginning transmission. No admission control is needed.

Using an FCFS service discipline can, however, lead to performance problems.

When congestion occurs, the queuing delay increases along with the queue length, and

the packets are discarded at the tail of queue when the queuing buffer reaches its

capacity. Most importantly, the resource of the router is allocated on a first-come-first-

service basis, neglecting the service requirement of individual traffic entities and treating

all the packets the same way.

Recent years have witnessed considerable research to extend the Internet

architecture to deliver QoS to support different levels of services. The two most

significant of these efforts are InteServ and DiffServ, which were briefly discussed in

Chapter 1. However, both service models introduce great complexity in implementation

and suggest substantial and radical changes to the existing infrastructures.

The scheduling mechanism employed in a service discipline is a key component

in realizing different levels of services. Therefore, we argue that different levels of

services can be provided by replacing FCFS with a different service discipline without

 24

making major changes to internal functions of existing routers. Several service disciplines

have been proposed, such as PGPS, Delay-EDD, Jitter-EDD, and WFQ. A thorough

survey of the literature is available in Gevros, 2001 [9].

In this chapter, we describe a new service discipline called Adjusted Weighted

Shortest Processing Time (A-WSPT), which provides services at different levels while

retaining much of the simplicity of the FCFS service discipline. In A-WSPT, the traffic

stream with a higher weight is treated with lower delay and less packet loss. Packets with

a lower priority are discarded in the event of congestion. The only requirement of

implementing this discipline is that each traffic flow must be assigned a weight to

indicate its relative importance. A-WSPT builds on the ideas found in the Weighted-

Shortest-Processing-Time (WSPT) rule. WSPT was designed to minimize the total

completion time of a finite number of jobs that were ready at beginning time. WSPT

itself is just an extension of the Shortest Processing Time (SPT) rule that associates a

weight factor with each job. The priority of each job is given by the ratio of the weight

factor to the processing time of the packet. The jobs are served in a decreasing order of

the priority [10]. A-WSPT further extends the WSPT to a design that will work in a

networking context. The weight is assigned on a per-flow basis to indicate the priority of

flow. The priority of individual packets is calculated with the weight of the traffic stream.

Another important issue addressed by the A-WSPT service discipline is the large

variance in delay caused by the dynamic service order of WSPT under the condition of

infinite arrivals. In WSPT, arrival packets of higher priority are inserted before those of

lower priority in the service queue. This dynamic insertion may defer the service to low

priority packets for an indefinite period of time. In some case, low priority packets suffer

extreme long delay, or are dropped entirely. As part of A-WSPT, we introduce an

exponential compensation to penalize the long delay of individual packets. The

exponential compensation is based on the intuition of scaling up the priority when the

delay increases.

A queuing system with the A-WSPT service discipline can be conceptualized as a

dynamic priority queuing system with infinite arrivals, in which the packets arrive at the

router without termination in the duration of observation. The priority of each packet is

 25

dynamically determined, and the service order is constantly refreshed. The introduction

of the A-WSPT rule is carried out in two steps.

First, the WSPT is customized to the per-flow context. A weight factor is

associated with each traffic stream to claim its service priority. The individual packets

inherit the weight from the associated traffic streams. The priority of each packet is

determined by both the processing time of that packet and the weight of the traffic

stream, as is given by equation

i
i

t
wp = ,

where pi is the priority of packet i, w is the weight associated with the traffic stream it

belongs to, and ti is the service time of that packet. Service time ti is given by the

equation

Φ
=

i
i

St ,

where Si denotes the size of the packet, and Φ denotes the bandwidth of the link. Thus,

the priority of the packet can be expressed as equation

i
i

S
wp Φ⋅

= .

The packet is accepted as long as there is enough space available in queuing buffer.

When the remaining queuing buffer is not sufficient for the arrival packet, a preemptive

packet dropper is used to drop packets. The preemptive dropper compares the priority of

arrival packet with that of the packet with lowest priority. If the arrival packet has lower

priority, it is dropped. Otherwise, the packet of lowest priority is dropped from the queue.

The comparison is carried iteratively, until there is enough space to accommodate the

arrival packet.

Packets are stored in the queue in the order of decreasing priority, so that there is

always pk>pl as long as k<l, where k and l denote the position of packets in the queue

respectively. The packet of highest priority is always sent out immediately whenever the

server is available. Those with lower priorities are held in the buffer until they are either

transmitted or otherwise discarded. The order of packets is dynamically refreshed to

reflect the arrival of packets. When an arrival packet is accepted, it is inserted into the

 26

queue solely based on the value of its priority. The packet i is inserted between adjacent

packets m and n so that there is always pn<pi<pm, as described in Figure 2-1.

... n m ... 1 Service

i Arrival

Decreasing order of priority

l k

Figure 2-1. Service order and the insertion of the packet.

Second, the packet priority is adjusted to penalize the delay. The insertion of

arrival packets may cause serious delay in queue to some packets with low priority. To

contain long delay caused by dynamic insertion of packets, the priority of a packet is

multiplied by the exponential compensation of delay, which is given by

PT
P

ie γ
λ
+

−

, where

Ti stands for the delay in queue of packet, λ and γ are constants scaling the exponential

compensation, and P is the average processing time of incoming packets. The A-WSPT

priority of the packet, then, is given by

PT
P

i ie
Si

wp γ
λ
+

−Φ
=

The compensation increases to 1 when the delay increases from 0 to infinite. The longer

the delay is, the greater the compensation will be. The value of exponential compensation

is solely determined by the delay, given λ, γ and P. The average processing time is given

as a constant empirically. The exponential compensation varies between some initial

level α and maximum 1. The initial level is the compensation value when the delay is

zero, which is given by equation

P
P

e γ
λ

α +
−

= 0

with Ti equal to 0.

 27

The parameters λ and γ can be determined by setting the upper bound of tolerable delay

in terms of n times the average processing time P and corresponding compensation value

β. That is when Ti rises from 0 to nP, the compensation will increase from α to β. By

solving the equations

P
P

e γ
λ

α +
−

= 0 ,

and

PnP
P

e γ
λ

β +
−

= ,

we have

n
βα
βαλ

lnln
lnln
−

−= , and

n
βα

βγ
lnln

ln
−

=

The priority of packets in the queue is constantly refreshed to reflect the delay each

packet has experienced. After each refresh, the queue is dynamically resorted to maintain

a service order of decreasing priority.

Services are differentiated between traffic streams by assigning different weights.

According to the definition of packet priority, the priority is in direct proportion to the

weight of the associated traffic stream. Increasing the weight of a traffic stream will

increase the priority of all belonging packets. Given identical probability distributions of

packet size for all traffic streams, we argue that the greater weight of a traffic stream

gives higher priority, in a statistical sense, to the belonging packets. As a result, the

packets of a high priority traffic stream have a better chance to be located before those of

a low priority stream in the queue, experiencing shorter delay, and less chance of being

discarded from the tail. Moreover, the controlled variance of delay enables an upper

bound to be set upon the delay.

2-2 Simulations and Experiment

To examine the service guarantee of the A-WSPT service discipline, three separate

routers are modeled using the A-WSPT, the WSPT and the FCFS service disciplines

 28

respectively. A comparative experiment is conducted between three router models. The

simulation and experiment are accomplished with the OPNET Modeler of OPNET

Technologies, Inc.

Figure 2-2. Router model in OPNET Modeler.

The router models (Figure 2-2) used in the simulation are composed of two input

ports and an output port, with an IP forwarder module simulating the function of

forwarding the packets from input ports to the output port. Each input port is associated

with three traffic sources. In this study, we assume that all packets come from one of the

two input ports and go to the only output port. A queuing system is used at the output

port. The queuing system is made up of a single queue and uses the service discipline

assigned to that router. A packet sink is connected with the queuing module to collect the

output packets. Since the primary concern of this study is the performance of the service

discipline of the queuing system, we assume that the transmission of packets between the

traffic source, IP forwarder and queuing system incurs neither delay nor packet drop.

Each traffic source generates a traffic stream with a certain service requirement

and a constant average bit rate. Two types of traffic are considered in this simulation –

high priority and low priority. High priority traffic is assigned a larger weight. The

priority of traffic is marked in the Type-of-Service (ToS) field of the IP header of

 29

belonging packets. In this study, ToS is set to 7 to indicate high priority traffic, and 0 for

low priority traffic. Since it is a general practice to assume the random arrival process as

a Poisson process, we specify the inter-arrival time of packets as exponentially

distributed. Similarly, the size of packets generated by each source assumes a normal

distribution. The expectation of the rate (bits/second) of the incoming traffic as generated

by each source can be estimated by the ratio of mean packet size and mean inter-arrival

time.

2-3 Results and Discussion

The performance collected from the simulation runs are categorized along the axes

of traffic setting, performance metrics and object of measures. Within each group, the

performances of the three service models are compared. Then, the results are inspected

and the comparison between the models is analyzed. Conclusions are drawn from the

results.

2-3.1 Heavy traffic

Time-in-System

As we observe from Figure 2-3, in the case of overwhelming high priority traffic,

the A-WSPT service discipline demonstrates a marked improvement over both FCFS and

WSPT in the area of time-in-system performance of high priority traffic. In addition,

although we note some variance in the time-in-system under the A-WSPT model, it is a

great improvement over the variance demonstrated by the WSPT.

 30

Figure 2-3. Time-in-system of high priority traffic (heavy traffic).

The time-in-system of the FCFS service discipline is shown in Figure 2-4. The

reason that the A-WSPT and WSPT service disciplines are excluded from this figure is

that there was little data to collect because in these disciplines, low priority traffic gets

little chance to be served when traffic conditions are heavy. Compared to the FCFS

service discipline, very few low priority packets are served by the A-WSPT router. The

low priority packets that do get served experience much longer time-in-system, due to the

low priority they have.

 31

Figure 2-4. Time-in-system of low priority traffic (FCFS).

Packet loss

Table 2-1 summarizes the packet loss rates of high priority traffic, low priority

traffic and overall traffic under heavy traffic conditions. For high priority traffic, both the

A-WSPT and the WSPT service discipline greatly reduce the packet loss rate. However,

because the overwhelming high priority traffic takes almost all the bandwidth, the packet

loss rate of low priority traffic is extremely high. Thus, for overall traffic, all service

disciplines have roughly the same packet loss rate.

Table 2-1. Packet loss for FCFS, WSPT, and A-WSPT disciplines under heavy traffic.

 FCFS WSPT A-WSPT

Premium Service

Traffic

 Dropped packets 4555 1043 1150

 32

 Arrived packets 12583 12583 12583

 Packet loss rate 36.2% 8.3% 9.1%

Best Effort Service Traffic

 Dropped packets 1945 5483 5353

 Arrived packets 5488 5488 5488

 Packet loss rate 35.4% 99.9% 97.5%

Overall traffic

 Dropped packets 6500 6526 6503

 Arrived packets 18071 18071 18071

 Packet loss rate 36.0% 36.1% 36.0%

Throughput

The throughput performance for high priority traffic and low priority traffic is

shown in Figure 2-5 and Figure 2-6 respectively. The WSPT service discipline allocates

full bandwidth capacity to high priority traffic, and prohibits the low priority packets

from being served. The A-WSPT discipline allocates a very small portion of bandwidth

to the low priority traffic. The FCFS discipline, instead of discriminating any one stream,

allocates bandwidth roughly in proportion to their incoming rate.

 33

Figure 2-5. Throughput of high priority traffic (heavy traffic).

Figure 2-6. Throughput of low priority traffic (heavy traffic).

 34

Figure 2-7. Throughput of overall traffic (heavy traffic).

Under overwhelming traffic condition, all three disciplines make use of full bandwidth

capacity, as shown in Figure 2-7.

2-3.2 Light traffic

Time-in-system

The time-in-system of high priority traffic for the A-WSPT, WSPT and FCFS

disciplines is shown in Figure 2-8. A-WSPT and WSPT have a similar time-in-system

performance for premium service traffic under light traffic conditions. Both treat high

priority packets with the shortest delay.

Figure 2-9 shows the time-in-system for lower priority traffic under light traffic

conditions. A-WSPT has a comparable, though slightly higher, time-in-system to the

FCFS service discipline. In this case, compared to WSPT, A-WSPT has a large variance

of time-in-system.

 35

Figure 2-8. Time-in-system of high priority traffic (light traffic).

Figure 2-9. Time-in-system of low priority traffic (light traffic).

OA-

0,7

06

05

0.4

0,3- JJ.

FCFS
-WSPT
-AWSPT

0!

0.1

20 40 60 SO 100 170

Simulalion Time (second)

140 160 180

2.5

1.5

E

0^

1

. f

' fl AA. i k J^:fl 1 a
JiJmmi''^ 'v iJ'mj

20 40 30 eo 100 120

Simulation Time (second)

140 150

FCFS
-WSPT
-Ar-WSPT

1B0

 36

Packet loss

Since the rate of total incoming traffic, including both high priority traffic and low

priority service traffic, is smaller than the bandwidth of the output port, packet loss does

not occur in any of the routers.

Throughput

 The three service disciplines exhibit similar throughput performance for high

priority (Figure 2-10), low priority (Figure 2-11) and all traffic (Figure 2-12), because,

under light traffic conditions, both high priority and low priority get the share of

bandwidth they need, whatever the service discipline used.

Figure 2-10. Throughput of high priority traffic (light traffic).

 37

Figure 2-11. Throughput of low priority traffic (light traffic).

Figure 2-12. Throughput of all traffic (light traffic).

 38

2-3.3 Conclusions

We summarize the results as follows. First, the A-WSPT service discipline, just

like WSPT, does differentiate the services between high priority traffic and low priority

traffic by assigning a larger weight to high priority traffic. Under both heavy traffic and

light traffic conditions, A-WSPT achieves better time-in-system performance for high

priority traffic. Second, compared to the WSPT service discipline, A-WSPT substantially

prevents the time-in-system from increasing to extremely high by compensating the time-

in-system. Especially under heavy traffic conditions, A-WSPT effectively contains the

variance of time-in-system of high priority traffic. Finally, however, A-WSPT is not

effective in fair resource allocation between the two traffic streams. High priority traffic

is preemptive, and can deplete the resource exclusively as long as it needs additional

bandwidth.

 39

Chapter 3: Providing Quality of Service for a Web Server
Using Queuing Disciplines

3-1 QoS Delivery for a Web Server

Providing guarantees on the quality of service is cited as one of the key factors

contributing to the success of an application and a “must” for the next- generation

Internet [11]. While “quality” could mean a number of things for different types of

Internet services (e.g., error-free, reliable data transmission, resolution of images,

foolproof security, etc.), we will focus on QoS as it relates to the timeliness or

responsiveness of the web server in satisfying the clients’ requests during an online

session. In particular, we are interested in evaluating different control policies for the

scheduling or sequencing of jobs in a web server queue based on the expected value of

cycle time of a request; that is, the time between the submission of the request by the

client and the completion of the request. Since the average cycle time metric only

reflects one side of performance, we will also be looking at other performance metrics

that measure responsiveness and efficiency of the web server: tardiness, lateness, average

number of jobs dropped or rejected (for policies that implement admission control), and

average throughput.

3-1.1 Previous Approaches

Several mechanisms have been proposed to address and provide QoS measures

for a web server. Cherkasova et al. [12] developed a session-based admission control

(SBAC) policy to prevent a web server from becoming overloaded, where a session is

defined as a sequence of a client’s individual requests. While their mechanism provides

no differentiation between sessions, the SBAC policy provides a fair guarantee of

completion for any accepted sessions, independent of a session length. However, for e-

commerce sites, longer sessions are generally associated with actual purchases.

Statistical analysis of completed sessions reveals that the overloaded web server

discriminates against longer sessions. Almeida et al. [13] studied the policy of assigning

 40

different priorities to the requests according to the requested web content and evaluated

the lateness in handling HTTP requests to the web pages. The strategies that the authors

used are static and limited to affect the scheduling indirectly through the use of process

priority and process blocking.

Li et al. [14] developed a measurement-based admission controlled web server,

which is able to allocate a configurable percentage of the bandwidth to different client

requests. When the server is fully utilized or a particular request has used more than the

allocated bandwidth, the request is discarded. This implies that the admission control

mechanism may drop any session in progress if the session exceeds the allocated

bandwidth. While this policy would benefit several performance measures such as cycle

time, such a strategy may clearly result in unsatisfactory user experience at these sites.

Lu et al. [15] proposed an adaptive architecture based on a feedback control loop to

provide relative delay guarantees for different service classes on a web server under

HTTP 1.1 protocol.

Load balancing is also a popular approach to providing availability by balancing

the service accesses among replicated web servers. Some strategies use the Domain

Name System (DNS) server to govern the resources in a cluster of replicated web servers.

Conti et al. [16] studied the strategy of evenly distributing the processing load among

replicated web servers to provide high levels of QoS. The authors allowed the servers to

be geographically distributed across the Internet. The DNS-based approach is simple, but

has some drawbacks. First, since the DNS service is designed to support data that

changes only infrequently, the approach is not well equipped to propagate changes in a

timely fashion. Secondly, if one of the replicated web servers crashes, the caching of

DNS data makes the services unavailable to all visitors. A solution to this problem is a

“reverse proxy”, which is an HTTP proxy server that operates in the opposite direction of

the commonly known one [17].

While the number of studies addressing the issue of providing QoS for web

servers has recently increased, there is as yet, no simple or comprehensive approach to

designing strategies with a QoS focus, due to the complexities associated with web server

operations. In addition to the academic research on the subject, some organizations have

also tried to address the QoS issue. One of these organizations is the Internet

 41

Engineering Task Force (IETF), which implemented and tested a number of protocols or

schemes for this purpose. The Integrated Services (InteServ) initiative was initiated

primarily by the desire to help the Internet support real-time multicast applications. The

InteServ architecture asserts that the underlying Internet architecture can support

multicast backbone (MBONE) type of applications without modification. It proposes that

an extension to the current architecture can be devised to provide capability beyond the

traditional Best-Effort service, in which the client requests are handled on a first-come-

first-served basis, without idling.

QoS in the InteServ model is concerned primarily with the timely delivery of

packets. The InteServ model defines two classes of applications by distinguishing the

application’s dependence on timely delivery of packets [18]. One is called elastic

applications that have no strict requirements for timely delivery of packets. The other

class of applications, which require timely service, is referred to as inelastic or real-time.

The InteServ architecture uses Resource Reservation Setup Protocol (RSVP) [RFC2205]

as its network control protocol to support QoS and traffic control requirements of

application flows by setting up necessary host and router states. RSVP requires signaling

to be deployed end to end in order to provide the requested type of service. However,

this also leads to a scalability problem, which results from the requirement for a signaling

mechanism to establish per-flow traffic states in each router that the path traverses and

prevents deployment of RSVP on the Internet.

The Differentiated Services (DiffServ) architecture simplifies the forwarding path

by moving the complexity of classifying traffic to the edges of the network. DiffServ

supports multiple service levels based on packet marking and per-class management of

routers in the network. DiffServ takes advantage of prioritizing the traffic through

various queue management and scheduling mechanisms.

Compared to InteServ, DiffServ has no explicit signaling protocol that establishes

session paths and maintains state tables with the routers. Packets carry the state

information in the IP headers. Each router handles the packets based on the information

in its differentiated services codeprint (DSCP). This is referred to as per hop behavior

(PHB). Within a DiffServ network, packet scheduling, buffer management, and packet

discard are required to provide differentiated service. Clearly, scheduling schemes that

 42

are more sophisticated than the simple FIFO service protocol hold potential to improve

efficiency of a packet-based network.

Several scheduling schemes have been proposed for this purpose. Priority

Queuing (PQ) scheme places packets into the buffer space according to priority, and

processes high-priority packets ahead of the lower priority packets. One problem with

this scheme, however, is that some low priority packets may be discarded or delayed for a

long time.

An enhancement to PQ is Class Based Queuing (CBQ), which permits the users to

assign a particular amount of buffer space to particular traffic classes. This buffer

allocation is static, which is a limitation of the CBQ scheme.

Even the best packet-scheduling algorithm, however, cannot ensure that the buffer

space is fairly allocated among the waiting packets. An ideal buffer management scheme

should make buffer space available to all traffic and at the same time make sure that high

priority traffic will not be deprived of buffer space by lower priority packets. Hence, an

intelligent packet drop scheme is needed. Weighted Fair Queuing (WFQ) with Random

Early Discard (RED) is a scheme that tries to manage the buffer space intelligently by

dropping the packets when there is congestion in the system.

Optimal or effective scheduling of machines and resources in production systems

is a topic that has attracted a lot of attention. For this chapter, we borrow results from the

scheduling literature and research their potential to improve performance of web servers.

We will be studying various scheduling, or more accurately, sequencing rules that have

been shown to yield optimal or effective schedules under certain conditions in production

systems. In particular, we will be implementing and testing the Weighted Shortest

Processing Time first (WSPT), Apparent Tardiness Cost (ATC), and Earliest Due Date

(EDD) scheduling rules to a web server using simulation and observe the performance

improvements these rules may bring.

3-1.2 Web Server Operation

Before presenting our model, an explanation of how web servers operate is useful.

There are three basic elements that make web service possible: Uniform Resource

Locators (URL) for identifying the resources, HyperText Transfer Protocol (HTTP) for

 43

transferring the information, and the client-server based architecture. HTTP is stateless,

i.e., each request is processed by the web server independently from previous or

subsequent requests. The client sends a URL request to the web server that provides the

resource. The web server then provides the requested services and returns the results

back to the client. The current version of HTTP, (i.e., HTTP 1.1) uses a mechanism

called persistent connection, which allows multiple requests to reuse the session. The

request is stored in the listen queue of the server’s well-known port, (e.g., 80), when the

web server receives the HTTP 1.1 client’s request. When the incoming requests arrive

faster than the rate at which they are removed from the queue, congestion happens.

Figure 3-1 presents our model for a “QoS web server”. Clients with different

priorities or job types access the web server, consisting of a single unit. The “single

machine” assumption will be relaxed later to allow for multiple requests being processed

simultaneously (i.e., parallel machine case). Once in the queue, each job awaits service

by the server. Upon completion of service, requests exit the system, which defines the

end of the ‘cycle time’. Below, we detail each component defined in our model.

Figure 3-1. Web server QoS model.

Requests Classifier

The requests classifier groups the requests so that certain ones are prioritized in

processing. Differentiated service policies aim to provide the highest quality of service to

1

2

n

Clients

Queue Server

Admission Control Scheme

K

...

t f.<ri

 44

the most important customers. For example, it is common to prioritize the service request

of the clients who pay for the service over the nonpaying clients. Some sites prioritize

requests based on the clients’ access history, IP address, and current status (e.g., a

customer with a full shopping cart or with a purchasing history attains a higher weight

than a customer without a purchasing history or a full cart). Web QoS, developed by

Bhatti and Friedrich [19], allows the incoming requests to be categorized as high,

medium, or low priority based on IP address, requested URL, and so on.

Admission Control Scheme

Deferring an incoming request at the very beginning of the transaction, rather than in the

middle is a desirable scheme for an overloaded web server. First, it avoids further

frustration by a client by refusing to accept the requests for which it cannot satisfy the

QoS requirements (e.g., limits on cycle time, lateness and tardiness, etc.). Secondly, it

keeps the queue levels at relatively stable levels, resulting in a less variable output.

We define the QoS factor of an incoming request as

jjjjj PWTDQ −−−= (3-1)

where Dj is the due date of request j, Tj is the arrival time of request j, Wj is the predicted

waiting time (i.e., sum of the processing times of the requests ahead of request j), and Pj

is the expected processing time of request j. According to our assumed admission control

scheme, if Qj is less than zero request j is rejected.

3-1.3 QoS Measures

Timeliness, precision, and accuracy are the attributes of QoS that people generally

use to measure the performance of web servers. We define four QoS measures in this

paper: number of dropped jobs per unit time (i.e., drop rate), average time in system (i.e.,

cycle time), average lateness and throughput. While we consider throughput as one of the

performance metrics, we focus our attention to time in system, drop rate and lateness,

since they represent the QoS characteristics we are most interested in.

Under the best effort and basic DiffServ policies, request drops occur only when

the queue is full. Under the WSTP, ATC, and EDD policies, request drops may happen

at admission control as well as when the queue is full, while requests are waiting in the

 45

queue. Time-in-system is used to measure the responsiveness of the web server.

Lateness represents the gap between the completion time and due date, and can be

negative or positive. A negative lateness indicates a request completed before its due

date, and a positive lateness indicates that the request was tardy. Lateness depicts how

well the requirement of the due date of the request is met.

3-2 Discussion of Different Queuing Disciplines

Best Effort Policy

The Internet and most corporate intranets are built with IP protocol, which is a

connectionless protocol that provides no guarantees on service time or relative order of

the packets. For web servers, the incoming requests are placed into a queue and

processed in a First-In-First-Out (FIFO) fashion. In the Best Effort model, there is no

admission control scheme. Hence, if client requests are placed into the queue faster than

they are moved from the queue to be processed, congestion occurs; requests are delayed,

and finally, the requests maybe be discarded. Because of this inherent behavior, the

Internet can only provide a single level of service, that of ‘Best Effort’.

Basic DiffServ Policy

Under the DiffServ policy, requests are categorized into priority classes. The

server always processes the higher priority queue before serving any of the lower priority

queues. DiffServ architectures generally define two kinds of classification: (1) the

behavior aggregate classifier, which selects packets according to the DSCP value on

ingress, and (2) the multifield classifier, which uses a more general set of classification

conditions like IP header field values and source address.

To implement a DiffServ model, we classify the incoming requests into two

categories: high priority and low priority, based on their assigned weights. Figure 3-2

shows two queues: one for high priority requests, another for best effort requests. Both

are serviced in a FIFO manner, but the best-effort queue will only be serviced when there

are no requests waiting in the high priority queue. Again, as in the Best Effort model,

there is no admission control in the basic DiffServ model.

 46

Figure 3-2. Basic DiffServ queuing rule model.

Weighted Shortest Processing Time Policy

For a single station, the Shortest Processing Time (SPT) policy, which sequences

a set of existing jobs in increasing order of processing times, pj, minimizes the sum of the

completion times (i.e., cycle times, assuming that all jobs are available at time zero).

This classic result can easily be extended to the case in which jobs have different weights.

In that case, sequencing the jobs in decreasing order of wj /pj minimizes the total weighted

completion times, where wj denotes the weight of job j. The policy is referred to as the

Weighted Shortest Processing Time (WSPT) policy (see Pinedo’s proof [10] based on an

interchange argument).

We adopt the WSPT rule to accommodate dynamic arrivals of requests and argue

that it can enable web servers to differentiate among requests based on the weights while

also considering the expected processing time of the requests. A policy that is purely

based on prioritizing the jobs based on their given weights provides a high level of

service to the requests with a high weight, however, jobs with lower weights could end

up with very long waiting times. Especially when a job may have a low weight but a

short expected processing time, processing it ahead of a higher priority job might make

sense.

Under the WSPT rule, upon each arrival, we sort the jobs in the queue in

decreasing order of the priority index, which is equal to wj /pj for each job j in the queue.

High priority queue

Server

Low priority queue

High priority queue

Server

Low priority queue

 47

Weight Only Policy

As a contrast of the WSPT model, we design a Weight Only (WO) model that

uses only ‘weight’ to define the priority of the request to see the influences upon the

model brought by processing time. In this model, the requests that belong to the same

class follow the FIFO queuing discipline to be placed into the queue.

Apparent Tardiness Cost Policy

The Apparent Tardiness Cost (ATC) rule is a composite dispatching rule that

combines the WSPT rule and the Minimum Slack first (MS) rule [10]. The MS policy is a

dynamic dispatching rule that orders jobs in increasing order of slack, where slack of job

j at time t is defined as max {dj- pj - t, 0}. dj denotes the due date of job j and pj denotes

the expected processing time of job j, as before.

Under the ATC rule, jobs are scheduled one at a time; that is, every time the

machine becomes free, a ranking index is computed for each remaining job. The job with

the highest-ranking index is the selected to be processed next. The index is defined as

{ }
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−=

pk
tpd

p
w

tI jj

j

j
j

0,max
exp)(, (3-2)

where k is a scaling parameter that can be determined empirically, and p represents the

average of the expected processing times of the remaining jobs in the queue at time t. We

can see that if k is big enough, the ATC rule will reduce to WSPT policy since the ATC

index Ij(t) → wj /pj as k→∝.

Earliest Due Date First Policy

Sequencing a number of jobs in increasing order of their due date, referred to as

the Earliest Due Date first (EDD) policy, minimizes the maximum lateness of a set of

jobs with given due dates and processing times [10]. While we know that EDD is

optimal for the case in which all jobs to be scheduled are available at time zero, it is

harder to find an optimal policy for the case in which jobs are released in different points

 48

in time, which reflects our case. The reason is that when preemption of jobs is not

allowed, the optimal schedule is not necessarily a non-idling schedule.

Having noted this point, we adopt the static EDD rule in our web server model by

placing the incoming requests into the queue according to their due date. The requests

with an earlier due date are placed into the front of the queue and processed before the

requests with a later due date.

3-3 Simulation of Different Queuing Rules

We simulate a web server under the policies discussed in section 3-2 using the

OPNET Modeler 8.1.A simulation environment. The simulation experiments were

conducted on a Micron PC with a single Pentium4 1.9GHz CPU and 512MB of RAM

running on Windows 2000 operating system. Figure 3-3 depicts the simulation model

based on the web server system presented in Figure 3-1. Generator 1, generator 2, and

generator 3 modules generate the requests with different weights (i.e., priorities). The

forwarder module forwards the requests to the queue, where the request dropper scheme

is implemented. The requests are then placed into the queue based on different rules.

The sink module destroys the requests after the web server processes them.

Figure 3-3. The topology of the QoS web server simulation.

We define four fields in the data packet format: processing time (denoted as

proc_time), weight, due date and time in system (denoted as TIS). The processing time

 49

(i.e., proc_time field in the packet format) represents the time to parse a request and is

assumed to be a function of the packet size, which follows the normal distribution. We

assume that the mean and the standard deviation of packet size are 6000 bytes and 1000

bytes, respectively. Because we focus on the connection and listening queue scheduling

problem of a web server, the processing time is not the time the server spends fetching a

file or executing a CGI program. We calculate the processing time by dividing the

request size by a constant, deterministic service rate. For instance, if the request size is

6000 bytes and the service rate of the server is 240,000 bytes per second, the processing

time for this request is assumed to be 0.025 second.

The weight field is a 4-byte integer that contains the weight information of a

request. The weight value is recorded in the weight field of a request packet when the

request is generated. There are some choices in selecting the proper weight value [19].

For simplicity, we only define three priority classes. In Figure 3-3, generator 1, 2, and 3

generate request arrivals with weights 1, 2 and 4, corresponding to low, medium, high

priority requests.

We expect that under policies that differentiate requests based on priority, the

high priority requests can be processed even when the web server is heavily overloaded

and the medium requests can partly get the service while the low priority requests may

not get the service at all due to request drops. Under the best effort policy, however, all

requests are treated equally. Under the DiffServ policy, requests are classified into low

and high categories; a request with a weight bigger than three is treated as a high priority

request while the remaining requests are categorized and treated as low priority.

The due date field in the packets shows the due date of a request. The due date of

a request is generally a function of the time-criticality of the operation. Some time-

critical applications require the web servers to respond within a specific period. If the

application can’t receive the response as required, the QoS requirements can’t be met. Of

course, whether the application can get the response on time or not depends not only on

how fast the web server processes the request but also on the delay during transmission

on the Internet. How to guarantee a lower bound of delay between routers is out of the

scope of this research. Hence, we focus on the due date that the web server is required to

process a request by and assume that the client will receive the processed request once

 50

the web server sends it out. The due date indicates the amount of time for which a

request can be in the system without violating the QoS requirements. We use the same

distribution to model the randomness of the due dates for all classes of requests because

we assume that they require the same URLs. We assume that the due dates are normally

distributed with a mean of 2 seconds and a standard deviation of 0.2 seconds.

The TIS field is used to record the time interval between the time the request

enters the listening queue and the time the request gets parsed and exits. We use this

field to observe the effectiveness of different scheduling schemes.

Table 3-1 shows the parameters we use for the high-traffic simulation

experiments. We use an exponential distribution to model the randomness in the arrival

of requests to the web server. Generator 1 and generator 2 modules generate requests at a

rate of 25 requests per second, while the generator 3 module generates requests at a rate

of 5 requests per second. Hence, the total traffic generated is equal to (25 + 25 + 5) *

6000 bytes per a second. We set the queue service rate 240,000 bits per second. The

server utilization is above 100%, and we expect that on average 15 requests will be

dropped per second. The capacity of the queue is assumed to be 512,000 bits.

Table 3-1. Parameter settings in overwhelming scenario.

Weight Packet Arrival Rate Due date (second) Packet Size (bits) k

1 Exponential(0.04) Normal(2,0.2)

2 Exponential(0.04) Normal(2,0.2)

4 Exponential(0.20) Normal(2,0.2)

Normal(6000,1000) 100

We also create a set of light traffic scenarios to test the effectiveness of different

policies. The arrival rate for weight 1 and weight 2 requests are reduced to 12.5 requests

per second, while the arrival rate for the weight 4 requests remain at a rate of 5 per

second. Hence, the total traffic generated reduces to only 75% of the traffic the web

server can handle.

The forwarder module in Figure 3-3 forwards the incoming requests to the queue.

OPNET uses the Finite State Machine (FSM) to implement the behavior and logic of a

 51

process model. We use a FSM to simulate the processing in the queue. There are 5 states

in the FSM: ‘init’, ‘arrival’, ‘svc_start’, ‘svc_compl’, and ‘idle’.

‘init’ State

The process enters ‘init’ state only once where we initiate the simulation variables and

register the probing statistics. When the simulation begins, the first request will arrive at

the ‘init’ state and then goes to ‘arrival’ state.

 ‘arrival’ State

 When a new request enters into the system and the FSM is in ‘idle’ state, the state

will also transform to ‘arrival’ state.

 Best Effort Model. When a request comes, it enters the ‘arrival’ state. If the queue

is already full, the request will be dropped; if not, it will be placed into the queue

by the FIFO rule. This is the way most of the current web servers deal with the

incoming client requests.

 Basic DiffServ Model. After a request enters the ‘arrival’ state, we get the

‘weight’ value from the packet. If the weight is bigger than 3 and the high priority

queue is not overflowed, the request will be put into the end of high priority

queue. If the high priority queue is overflowed, the request will be dropped. If the

weight is less than or equal to 3 and the low priority queue is not full, it will be

placed into the end of the low priority queue. If the low priority queue is full, the

request will be discarded.

 WSPT Model. First we execute the admission control algorithm: we traverse the

queue to calculate the QoS factor in equation (3-1) for each request in the queue.

If the QoS factor of a request is above 0, it will stay in the queue and wait for

being scheduled to process. If the QoS factor is less than 0, it will be dropped.

After implementation of the Admission Control Scheme, we will get the ‘weight’

value and packet size from a new request that goes into the ‘arrival’ state. We get

the expected processing time of this request by its packet size divided by the

service rate of the queue. Then we get the priority of the incoming request

according to the equation (wj/pj). Now we will try to insert the request into the

queue based on its priority. The requests with bigger priority will be placed ahead

of the requests with less priority. If it is inserted successfully, we will mark

 52

‘insert_ok’ as 1. If unsuccessfully, which means that the queue is full, we will

compare the new incoming request’s priority with the priority of the request at the

end of the queue. If the new request’s priority is bigger, we will drop the request

at the end of the queue and insert it according to its priority, and mark ‘insert_ok’

as 1. If the new incoming request has a lower priority, we just discard it.

 WO Model. The process is the same as in WSPT model except that we use only

‘weight’ to decide the priority of a request.

 ATC Model. As an extension of WSPT, we also implement the Admission

Control Scheme at the very beginning of the ‘arrival’ state. For a new incoming

request, we calculate its index based on equation (3-2) as its priority. We attempt

to insert a request according to its priority into the listening queue and deal with

the insertion action as what WSPT does. We also assign different values to the k,

the scaling parameter, in equation (3-2) to investigate the impacts.

 EDD Model. We perform the Admission Control Scheme when the process enters

the ‘arrival’ state. We extract the due date information of a new request from the

packet’s ‘duedate’ field. We use its reciprocal as the priority and try to insert the

request into the queue based on its priority and handle the insertion action as what

WSTP does.

‘svc_start’ State

When the server is not busy and ‘insert_ok’ is marked as 1, the process enters the

‘svc_start’ state from the ‘arrival’ state. Another transformation to the ‘svc_start’ state

happens from the ‘svc_compl’ state when the queue is not empty. In this state, we will

remove a request from the head of the queue and schedule its processing based on its

processing time. When the request is processed, an interrupt occurs and the state is

transformed to ‘svc_compl’. If there are no jobs waiting for processing, then the FSM

transforms to the ‘idle’ state.

A request goes into the sink component in Figure 3-3 after it is dequeued and

processed where the requests are simply destroyed.

We set the simulation duration (i.e., run length) as 4,000 seconds. To capture the

QoS metrics defined above, we use the ‘Bucket’ mode, which is one of the statistics

collection options in OPNet. The Bucket mode collects all of the points over the time

 53

interval and calculates the average of all the values collected for that bucket period, to

calculate average performance metrics such as the average TIS and lateness. We use

‘sum/time’, the sum of all the values of points within a particular bucket, divided by the

time duration of the bucket, to capture the drop rate and throughput metrics.

3-4 Experimental Results

In the sections above we introduced our web server QoS models design,

implementation and simulation configuration. In this section, we provide detailed results

on our simulation experiments for the heavy traffic and light traffic cases and provide

intuition on our results for each of the QoS performance measures.

3-4.1 Heavy-traffic Case

We first present the results of the overwhelming traffic scenario.

Time-in-System

TIS

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

Time (Second)

Se
co

nd

ATC
BE
DS
EDD
WSPT
WO

Figure 3-4. Overall time-in-system in the heavy-traffic scenario.

Figure 3-4 shows the TIS performance under the WSPT, ATC, EDD, Best Effort,

WO and Basic DiffServ policies. We take all the requests that get processed into account

and calculate the TIS over time after the 120th second when the system reaches steady

state. We make the following observations:

 54

• The overall performance is dramatically enhanced under ATC, EDD, and WSPT

policies. The mean TIS under the Best Effort policy is 2.116 seconds while it is

0.179 seconds under the WSPT policy.

• The Basic DiffServ performs slightly better than Best Effort.

• ATC, EDD, and WSPT, the policies with an admission control scheme, have similar

performance. The admission control scheme discards the requests whose QoS

requirements can’t be met before they are even placed in the queue, which results in

smaller average queue sizes (see Figure 3-5 and Table 3-6) and consequently shorter

TIS. The average queue size of ATC is about 169,802 bytes while under the Best

Effort policy the average queue size is about 499,602 bytes. The processing time also

contributes to the smaller overall TIS of WSPT compared with that under the WO

policy. The overall TIS of WO is about 0.539 seconds.

Queue size

0
100000
200000
300000
400000
500000
600000

0 1000 2000 3000 4000 5000

Time (Second)

B
its

ATC
BE
DS
EDD
WSPT
WO

Figure 3-5. Queue size in the heavy-traffic scenario.

Table 3-2 shows the mean and standard deviation of TIS for all the three classes

of requests. The TIS of class 1, 2, and 4 under the Best Effort Model is all about 2.11

seconds because there is no differentiation mechanism.

Table 3-2. Time-in-system in heavy-traffic scenario: mean and deviation values.

Type of class
Models

1 2 4 Overall

 55

Mean 0.523255931 0.08159186 0.039299206 0.184538466
ATC

STD 0.048392924 0.006736874 0.000691119 0.010391973

Mean 2.116473376 2.116473376 2.116167135 2.116167135 Best

Effort STD 0.00478517 0.00478517 0.006119975 0.006119975

Mean 2.265243257 2.264344337 0.039223369 1.982595353 Basic

DiffServ STD 0.026087784 0.026775045 0.000761247 0.006535154

Mean 0.185481416 0.188201039 0.180892617 0.186327018
EDD

STD 0.014389874 0.014481299 0.031294585 0.010743542

Mean 0.499754732 0.081416755 0.039178729 0.178988725
WSPT

STD 0.043456638 0.081416755 0.000668291 0.010373725

Mean 1.966808975 0.082197745 0.039462374 0.539797138
WO

STD 0.050188409 0.007286006 0.000646759 0.030647195

Figure 3-6 shows the TIS of class 4. The high priority class (with weight 4) has

very small TIS under the Basic DiffServ model.

TIS of Class 4

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

Time (second)

Se
co

nd

ATC
BE
DS
EDD
WSPT
WO

Figure 3-6. Time-in-system of Class 4 in the heavy-traffic scenario.

However, the TIS of low priority and medium priority classes under the Basic

DiffServ policy are even longer than that under the Best Effort policy, as shown in

Figures 3-7 and 3-8. For the ATC and WSPT models, the TIS of class 4 is quite small,

 56

0.039 second, which reveals that the high priority requests are processed with the highest

priorities. The TIS of class 2 in ATC and WSPT is 0.081 second. The TIS of class 1 are

shown in Figure 3-8. The TIS of class 1 is 0.499 second in WSPT and 0.052 second in

ATC. We can see that requests with higher priority have smaller TIS in ATC and WSPT.

As to the EDD model, class 1, 2, and 4 have similar TIS because they have the same due

date which decides the priority. All requests in EDD have the same priority and thus

there is no differentiation. The TIS is still much smaller for EDD than in Best Effort

thanks to the request dropper.

TIS of Class 2

0

0.5

1
1.5

2

2.5

0 1000 2000 3000 4000 5000

Time (Second)

Se
co

nd

ATC
BE
DS
EDD
WSPT
WO

Figure 3-7. Time-in-system of Class 2 in the heavy traffic scenario.

TIS of Class 1

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

Time (Second)

Se
co

nd

ATC
BE
DS
EDD
WSPT
WO

Figure 3-8. Time-in-system of Class 1 in the heavy traffic scenario.

 57

Drop Rate

Drop

0

5

10

15

20

25

0 1000 2000 3000 4000 5000

Time (Second)

Se
co

nd

ATC
BE
DS
EDD
WSPT
WO

Figure 3-9. Overall drop in the heavy traffic scenario.

Drop of Class 4

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

Time (second)

Pa
ck

et
s

ATC
BE
DS
EDD
WSPT
WO

Figure 3-10. Drop of Class 4 in overwhelming scenario.

Figure 3-9 shows the overall drop rate. Figure 3-10 depicts the drop of the high

priority requests. The average drop rate for high priority requests under the Best Effort

policy is about 1.4 packets per second and 1.38 packets per second under EDD (see Table

3-3). EDD provides only a slight improvement in drop rate because the request with the

earliest due date is given priority in processing under EDD. In this simulation, we set the

 58

same due date for all three classes of requests which leads to no differentiation between

the three classes.

Almost no high priority requests are dropped under the Basic DiffServ policy.

However, more requests in low and medium priority classes are dropped even compared

to Best Effort. This reveals that Basic DiffServ discriminates the Best Effort requests to

give premium requests better performance. This verifies the design that only when there

is no high priority request waiting for processing can a low priority request get the chance

to be processed.

ATC and WSPT offer good granularity and differentiation. There is also almost

no high priority requests dropped under the ATC and WSPT policies (0.005

packets/second in WSPT, and 0.007 packets/second in ATC). The low priority requests,

however, have a drop rate of about 15 packets per second under the WSPT and ATC

policies, as shown in Figure 3-12. So, the requests with higher priority are processed at

the expense of low priority requests.

Drop of Class 2

-2

0

2

4

6

8

10

0 1000 2000 3000 4000 5000

Time (second)

P
ac

ke
ts

ATC
BE
DS
EDD
WSPT
WO

Figure 3-11. Drop of Class 2 in overwhelming scenario.

 59

Drop of Class 1

0

5

10

15

20

25

0 1000 2000 3000 4000 5000

Time (second)

P
ac

ke
ts

ATC
BE
DS
EDD
WSPT
WO

Figure 3-12. Drop of Class 1 in overwhelming scenario.

In Table 3-3, we note that the overall drop rate is at the same level for all the

models. This is because the service rate of the queue is fixed at 240,000 bits per second

and the simulation setting is identical for all the models.

Table 3-3. Drop in heavy-traffic scenario.

Type of class
Models

1 2 4 Overall

Mean 15.62565822 0.007989691 0 15.63442111
ATC

STD 1.414766351 0.012126125 0 1.419334222

Mean 6.793182074 6.897147962 1.407688479 15.09766343
Best Effort

STD 0.688833983 0.655430033 0.201257757 1.310141545

Mean 7.5006563 7.59302425 0 15.09353971
Basic DiffServ

STD 0.775397906 0.662476673 0 1.308048687

Mean 6.92495467 7.01436005 1.38964126 15.62392374
EDD

STD 0.724070713 0.659029458 0.212349655 1.375694534

WSPT Mean 15.5545242 0.005346005 0 15.5601943

 60

 STD 1.371508209 0.008310796 0 1.375888456

Mean 15.75464245 0.000773196 0 15.75541565
WO

STD 1.427166528 0.000564566 0 1.428159499

Lateness

Table 3-4 shows the results of Lateness. As we define Lateness as TIS deducted

by the due date, we find that ATC, EDD, and WSPT models have negative Lateness,

which means they meet the lateness QoS requirement. In DiffServ only requests of class

4 can get the service before the due date. The Best Effort Model can’t meet the lateness

requirements at all.

Table 3-4. Lateness in heavy-traffic scenario.

Type of class
Models

1 2 4 Overall

Mean -1.528289244 -1.921393994 -1.960512063 -1.829788613
ATC

STD 0.043709876 0.015548354 0.03111366 0.013234516

Mean 0.115708211 0.114391906 0.11358857 0.114937899
Best Effort

STD 0.017526331 0.018718165 0.04003511 0.01217135

Mean 0.26508576 0.26213268 -1.960587 -0.01839025
Basic DiffServ

STD 0.03196414 0.03435459 0.0310609 0.0130461

Mean -1.612081557 -1.612478523 -1.61480927 -1.612503186
EDD

STD 0.019171375 0.019259405 0.03277927 0.016589612

Mean -1.527947347 -1.921466671 -1.960623133 -1.829577936
WSPT

STD 0.042454893 0.015487681 0.031133791 0.014023748

Mean -0.392350188 -1.920620298 -1.960345972 -1.549753094
WO

STD 0.024025049 0.015704897 0.030984531 0.028747725

 61

Throughput

Table 3-5 contains the results on average throughput. The results are consistent

with those contained in Table 3-3. As can be expected, higher drop rate results in smaller

throughput. We find that with the same overall throughput, ATC and WSPT successfully

differentiate the throughput among the three classes of requests. The Basic DiffServ

policy yields a higher throughput of high priority requests compared to that under the

Best Effort policy, which provides no differentiation between the requests.

Table 3-5. Throughput in heavy-traffic scenario.

Type of class
Models

1 2 4 Overall

Mean 59144.62807 150588.3688 30429.08981 240161.1892
ATC

STD 5311.398924 4981.326976 2263.328942 13.70711604

Mean 109007.5019 109181.9109 21973.07728 240161.146
Best Effort

STD 2699.866684 2778.473433 1825.844209 13.63159207

Mean 104738.9537 104993.1148 30429.02813 240159.9215
Basic DiffServ

STD 2770.724671 2877.987539 2262.411586 1.519452587

Mean 108908.678 109155.7446 22096.96516 240160.2943
EDD

STD 3041.214913 3238.332632 1860.560017 5.257452625

Mean 59128.50729 150604.6331 30429.04182 240161.271
WSPT

STD 5331.385047 4986.82248 2258.003664 12.83305048

Mean 59101.43066 150630.4305 30429.03291 240160.039
WO

STD 5346.217383 5001.39114 2260.481318 2.591546896

Average Queue Size

The average queue size under each of the policies is shown in Table 3-6. The

average queue size under ATC and WSPT are only about one third of that under the Best

Effort and DiffServ policies. The smaller queue size contributes to the smaller average

TIS under these two policies. We also find that the average queue size of the Basic

 62

DiffServ is about 31,669 bytes smaller than that of the Best Effort because of its priority

queuing policy.

Table 3-6. Average queue size for heavy-traffic scenario.

3-4.2 Light-Traffic Case

Time-In-System

Table 3-7. Parameter settings in light-traffic scenario.

Weight Packet Arrival Rate Due date (second) Packet Size (bits) k

1 Exponential(0.08) Normal(2,0.2)

2 Exponential(0.08) Normal(2,0.2)

4 Exponential(0.2) Normal(2,0.2)

Normal(6000,1000) 100

Table 3-7 shows the parameters we use for the light traffic case. Figure 3-13

shows the overall TIS of the ATC, Best Effort, Basic DiffServ, EDD, WSPT and WO

policies. The performances are quite similar, at about 0.062 second. This is because the

incoming traffic is 75% of the service rate of the web server and there is almost no

congestion in the queue as shown in Figure 3-14. The queue size of these models is in

the same level. For example, WSPT has an average queue size of about 6,764.449711

bytes as shown in Figure 3-14 and Table 3-12.

Models ATC Best Effort DiffServ EDD WSPT WO

Mean 169802.9935 499602.1988 215178.9891 170659.3655 248627.5597 467932.8914Average

Queue

Size

(bits)
STD 10201.86113 1011.774575 11632.35623 10196.18705 8097.747311 1183.825111

 63

TIS

0

0.02

0.04

0.06

0.08

0.1

0 1000 2000 3000 4000 5000

Time (Second)

S
ec

on
d

ATC
BE
DS
EDD
WSPT
WO

Figure 3-13. Overall time-in-system in light-traffic scenario.

Queue size

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000

Time (Second)

Bi
ts

ATC
BE
DS
EDD
WSPT
WO

Figure 3-14. Queue size in light-traffic scenario.

Table 3-8. Time-in-system in light-traffic scenario.

Type of class
Models

1 2 4 Overall

Mean 0.08767569 0.046046819 0.038381015 0.062116768
ATC

STD 0.012771224 0.002349674 0.001027451 0.005996689

Mean 0.062669004 0.062571566 0.062510799 0.06259972Best

Effort STD 0.007166764 0.007126773 0.00711038 0.006908039

 64

Mean 0.068026702 0.068017621 0.035670696 0.062600114Basic

DiffServ STD 0.008446438 0.008466646 0.000838722 0.006905134

Mean 0.062898659 0.062437867 0.062127023 0.062565073
EDD

STD 0.008240095 0.007204041 0.008842558 0.006772264

Mean 0.091027432 0.044015203 0.035672294 0.06221866
WSPT

STD 0.013470482 0.002179968 0.000842854 0.006230094

Mean 0.091847391 0.04404861 0.035675891 0.062576618
WO

STD 0.014979064 0.002205344 0.000836807 0.006812168

We also note that TIS of the high priority requests under the ATC, WSPT, Basic

DiffServ, and WO policies is smaller than that under the Best Effort and EDD policies

(see Figure 3-15 and Table 3-8). TIS of the medium priority requests under the ATC,

WSPT and WO policies is smaller than that under the Best Effort and EDD policies (see

Figure 3-16). Hence, requests with higher priorities have precedence over requests with

lower priorities. However, TIS of the low priority requests under the ATC, WSPT, and

WO policies are longer than that under the Best Effort and EDD policies (see Figure 3-

17).

TIS of Class 4

0

0.02

0.04

0.06

0.08

0.1

0 1000 2000 3000 4000 5000

Time (Second)

Se
co

nd

ATC
BE
DS
EDD
WSPT
WO

Figure 3-15. Time-in-system of Class 4 in light-traffic scenario.

 65

TIS of Class 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1000 2000 3000 4000 5000

Time (Second)

S
ec

on
d

ATC
BE
DS
EDD
WSPT
WO

Figure 3-16. Time-in-system of Class 2 in light-traffic scenario.

TIS of Class 1

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

0 1000 2000 3000 4000 5000

Time (Second)

S
ec

on
d

ATC
BE
DS
EDD
WSPT
WO

Figure 3-17. Time-in-system of Class 1 in light-traffic scenario.

Drop Rate

Figure 3-18 includes the overall drop rate information. There is no drop at all

under the Best Effort and Basic DiffServ policies (see Table 3-9). There are very small

amounts of requests dropped in ATC, WSPT, EDD and WO due to the admission control

 66

scheme. As we can see, the average drop rate in the WSPT model is about 0.003865979

requests per second. We also find that all the drops occur only in the class of low priority

requests (see Figure 3-19 and Table 3-9).

Drop

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000

Time (Second)

P
ac

ke
ts

ATC
BE
DS
EDD
WSPT
WO

Figure 3-18. Overall drop in light-traffic scenario.

Drop

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 1000 2000 3000 4000 5000

Time (Second)

Pa
ck

et
s

ATC
BE
DS
EDD
WSPT
WO

Figure 3-19. Drop of Class 1 in light-traffic scenario.

Table 3-9. Drop in light-traffic scenario.

Type of class
Models

1 2 4 Overall

ATC Mean 0.006701031 0 0 0.006701031

 67

 STD 0.023044349 0 0 0.023044349

Mean 0 0 0 0
Best Effort

STD 0 0 0 0

Mean 0 0 0 0
Basic DiffServ

STD 0 0 0 0

Mean 0.000257732 0 0 0.000257732
EDD

STD 0.000304697 0 0 0.000304697

Mean 0.003865979 0 0 0.003865979
WSPT

STD 0.014227945 0 0 0.014227945

Mean 0.000257732 0 0 0.000257732
WO

STD 0.00030461 0 0 0.00030461

Lateness

Table 3-10 shows the results of Lateness. We find that there is no violation of

due date requirements in the light traffic scenario even under the Best Effort policy.

Table 3-10. Lateness in light-traffic scenario.
Type of class

Models
1 2 4 Overall

Mean -1.909018251 -1.958329964 -1.963755325 -1.938770439
ATC

STD 0.0219943 0.017470915 0.029719239 0.012893351

Mean -1.93375419 -1.941806222 -1.939612178 -1.938180113
Best Effort

STD 0.020510694 0.018925223 0.030308379 0.013472752

Mean -1.928398407 -1.936359468 -1.966472841 -1.938180247
Basic DiffServ

STD 0.020727154 0.019399408 0.029622816 0.013437684

Mean -1.933512162 -1.941937069 -1.940017113 -1.938212043
EDD

STD 0.02025289 0.01844262 0.028846449 0.013357388

Mean -1.905541708 -1.960362274 -1.966471243 -1.938619712
WSPT

STD 0.022471467 0.01739584 0.029625985 0.013092515

WO Mean -1.905541708 -1.960362274 -1.966471243 -1.938619712

 68

 STD 0.022471467 0.01739584 0.029625985 0.013092515

Throughput

Table 3-11 contains the results on the throughput metric. Since the incoming

traffic and service rates are the same under all of the policies, they produce almost the

same level of throughput in the light traffic scenario, since the system is stable and able

to handle the incoming traffic. The throughput of the Best Effort and Basic DiffServ

policies are a little higher than that under the other policies since no requests are dropped,

resulting in a higher arrival (and hence, throughput) rate.

Table 3-11. Throughput in light-traffic scenario.

Type of class
Models

1 2 4 Overall

Mean 75112.80021 74756.6419 30122.96162 179991.1079
ATC

STD 3585.030425 3301.072765 2293.579455 5213.360062

Mean 75153.08191 74756.6419 30122.96162 180031.3896
Best Effort

STD 3599.10931 3311.927752 2284.944747 5228.480786

Mean 75153.08191 74756.6419 30122.96162 180031.3896Basic

DiffServ STD 3596.599427 3309.438904 2293.930355 5228.508383

Mean 75151.53655 74756.6419 30122.96162 180029.8442
EDD

STD 3590.526122 3306.806282 2280.50883 5228.891594

Mean 75129.66799 74756.6419 30122.96162 180007.9757
WSPT

STD 3595.088318 3299.409243 2293.996179 5227.263631

Mean 75151.53681 74756.6419 30122.96162 180007.9757
WO

STD 3593.143244 3299.204783 2293.94109 5227.263631

Queue size

Tables 3-12 show the average queue size under each one of the policies. Since there is

almost no congestion in the system under this light traffic, the average queue length

under the different policies is quite similar at around 6,000 bits. The smaller queue size

contributes to the smaller overall TIS compared to those observed in the heavy traffic

case.

 69

Table 3-12. Average queue size in light-traffic scenario.

3-5 Conclusions

In this chapter, we demonstrated how to model a web server as a single machine

and applied the WSPT, ATC, and EDD queuing disciplines to differentiate the services

and thus to provide QoS to nowadays Best Effort web servers.

We proposed that most current web servers could be modeled via the Best Effort

Model. From the simulation results we verified that the Best Effort Model couldn’t

provide differentiated service at all.

In the Basic DiffServ Model, incoming requests are classified to two levels: low

priority and high priority. High priority requests always have precedence over low

priority requests. Low priority requests are processed only when there are no requests in

the high priority queue. From the simulation results we find that the performance of high

priority requests is guaranteed: no drop and low TIS. Basic DiffServ is easy to understand

and implement. However, as we can see from the results, Basic DiffServ must be used

with care. A large volume of high priority requests will easily starve the best effort

requests; the best effort requests will never be processed if high priority requests are

always in the high priority queue. In our simulation, the ratio of best effort requests and

high priority requests is 10:1. Therefore, the Basic DiffServ Model should only be used

for mission-critical traffic to ensure the amount of the high priority requests is limited to

a small portion of the overall traffic.

We introduced a Request Drop Scheme, which contributes to the tremendous

improvement in the TIS. Thanks to the Admission Control Scheme, the overall TIS of the

WSPT, ATC, and EDD Models is less than 10% of the overall TIS of the Best Effort and

Models ATC Best Effort DiffServ EDD WSPT WO

Mean 6733.640516 6768.938395 6766.479461 6742.812166 6764.449711 6768.725789Average

Queue

Size

(bits)
STD 1345.415357 1420.724057 1413.723684 1366.507132 1410.745253 1421.345737

 70

Basic DiffServ Models. This reveals that the Admission Control Scheme is effective to

maintain timeliness for an overwhelmed web server.

We have shown that the WSPT and ATC dispatching rules can be used to provide

differentiated services. Instead of simply using the weight, WSPT combines it with

processing time to determine the priority of a request. Unlike Basic DiffServ, in which

the high priority requests always have precedence over the Best Effort requests, a request

with low weight but short processing time in WSPT and ATC still has the chance to be

processed before a request with high weight and longer processing time. ATC is a

composite of WSPT and MS. We perceived that in our case the main factor in ATC is

WSPT, not MS. From the simulation results, the performance of ATC is quite similar to

WSPT when the scaling parameter k is set to 100. We also create a scenario of ATC with

different scaling parameters of 1, 50, 100, 1000 and 10000. Figure 3-20 shows that when

k is as small as 1 the overall TIS is longer than k equals 50. The TIS is quite similar when

k is equal to or bigger than 50. We also note that there is no differentiation between

requests when k is 1 and that ATC is converging to WSPT when k is 10,000 as expected.

TIS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1000 2000 3000 4000 5000

Time (Second)

S
ec

on
d

k=1
k=50
k=100
k=1000
k=10000

Figure 3-20. Overall time-in-system of ATC with different scaling parameters.

We can also safely conclude that our QoS models not only provide good

performance when the server is overloaded but also work well under the light traffic

condition. In the light-traffic scenario, the QoS models provide better TIS for high

 71

priority requests at the cost of a very small amount of drop of lower priority requests and

slightly longer TIS for lower priority requests, and thus, the cost/benefits get balanced.

However, as Pinedo stated [10], real-world scheduling problems are different

from the mathematical models in academia. For example, WSPT is a static rule, which is

not time dependent. It assumes that there are n jobs to be scheduled and the problem is

done after the n jobs are scheduled. For a web server, the requests are submitted by

clients continuously. WSPT may not be the optimal scheduling rule to gain the minimum

total weighted completion time. Another important aspect of the differences is that the

stochastic models usually use special distributions which may not represent the behaviors

of the real system closely. Here we use request size divided by service rate to decide the

processing time of a request. Request size follows the normal distribution. For a web

server, the processing time of a request may be influenced by the load and configuration

of the web server.

In spite of so many differences, the scheduling rules in manufacturing provide

valuable insights into the scheduling problems in information infrastructures. From the

results of our research, some manufacturing scheduling rules may be used to develop the

framework for QoS enabled web servers.

 72

REFERENCES
1. S. Garfinkel, and G. Spafford (1996). Practical UNIX & Internet Security.

Cambridge: O’Reilly & Associates.

2. G. Huston, Internet Performance Survival Guide. New York, Wiley, 2000, pp. 9.

3. R. Braden, D. Clark, and S. Shenker, “Integrated services in the Internet architecture:

an overview,” Request for Comments (Informational) 1633, Internet Engineering

Task Force, June 1994. Available: http://www.ietf.org/rfc.html.

4. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss “An architecture

for differentiated service,” Request for Comments (Informational) 2475, Internet

Engineering Task Force, Dec. 1998. Available: http://www.ietf.org/rfc.html.

5. Jim Kurose, “Open issues and challenges in providing quality of service guarantees in

high-speed networks”, ACM SIGCOMM Computer Communication Review, vol. 23

n.1, pp.6-15, Jan. 1993.

6. B. Sabata, S. Chatterjee, M. Davis, J. J. Sydir, T. F. Lawrence, “Taxomomy of QoS

Specifications,” in 3rd Workshop on Object-Oriented Real-Time Dependable

Systems, 1997, pp. 100-107.

7. A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Approach to

Flow Control in Integrated Services Networks: The Single-Node Case,” IEEE/ACM

Transactions on Networking, vol. 1, no. 3, pp. 344-357, June 1993.

8. Howard L. Harrison, John G. Bollinger, Introduction to Automatic Controls, 2nd

Edition. New York: Harper & Row, 1969, pp. 159-182.

9. Panos Gevros, et al, “Congestion Control Mechanisms and the Best Effort Service

Model”, IEEE Network, 2001

10. Michael Pinedo, Chapter 3, “Scheduling: Theory, Algorithms, and Systems”, Prentice

Hall, 1995.

 73

11. Strnadl, C., 2002, At your Service: QoS for the Internet, IEEE Multimedia, 93-95.

12. Cherkasova, L. and Phaal, P., 2002, Session-Based Admission Control: A mechanism

for Peak Load Management of Commercial Web Sites, IEEE TRANSACTIONS ON

COMPUTERS, 13 (6), 669-685.

13. Almeida, J., Dabu, M., Manikutty, A. and Cao P., 1998, Providing Differentiated

Levels of Services in Web Content Hosting, First Workshop on Internet Server

Performance, Madison, WI.

14. Li, K. and Jamin, S., 2000, A measurement-Based Admission-Controlled Web

Server, Proc IEEE INFCOM 2000.

15. Lu, C., Abdelzaher, T. F., Stankovic, J. A. and Son, S. H., 2001, A FeedBack Control

Approach for Guaranteeing Relative Delays in Web Servers, IEEE Real-Time

Technology and Application Symposium (RTAS’ 2001), Taipei, Taiwan.

16. Conti, M., Gregori, E. and Panzieri, F., 1999, Load Distribution among Replicated

Web Servers: A Qos-Based Approach, Second Workshop on Internet Server

Performance in conjunction with ACM SIGMETRICS 99/FCRC, Atlanta, GA.

17. Engelschall, R. S., 1998, Load Balancing Your Web Site, Practical Approaches for

Distributing HTTP traffic, http://www.webtechniques.com/archives/1998/engelschall

18. Lzzo, P., 2000, Gigbit networks: standards and schemes for next-generation

networking, (John Wiley & Sons, Inc.), chapter 6, pp. 177-233.

19. Bhatti, N. and Friedrich, R., 2000, Web Server Support for Tiered Services, IEEE

Network, 13 (5).

